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Abstract

From movies to video games, sound plays a crucial role
in our perception of the world. In this project, we aim
to predict the volume of visually indicated sounds (VIS)
from silent video scenes. This problem is intriguing be-
cause its completion will bring us one step closer to the
general task of predicting visually indicated sounds, which
can help in numerous applications from generating the ac-
companying sound in silent films to producing sound ef-
fects for video entertainment. We present a model involy-
ing a recurrent-neural network composed of a CNN and
an LSTM, trained on an existing drumsticks dataset and
a novel impacts dataset of our making. We find that our
model generally predicts the occurrences of auditory inflec-
tion points in video correctly, but needs further improve-
ment in estimating the volume of the inflection points accu-
rately.

1. Introduction

There are many types of sound we encounter on a daily
basis. Some are ambient/held-out sounds, and some are vi-
sually indicated sounds. For example, the sound of some-
one swinging a baseball bat into a wall would be a visually-
indicated sound, as there is a physical interaction that in-
dicates the sound; an ambient or held-out sound, on other
hand, could be the background sound of waves crashing at
a beach.

In this project, our goal is to predict the frame-by-frame
volume levels for a silent video with visually indicated
sounds. We focus on visually indicated sounds as there is a
direct relationship between the image data in the video and
the sound produced.

There has been a decent amount of work done in the field
of visually indicated sounds. However, much of the work
focuses on accomplishing tasks for a very narrow domain
(i.e. for only specific types of videos). We instead aim to
solve the slightly simpler task of frame-by-frame volume
prediction for a broader domain of video data. We hope this
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Figure 1. We train a model whose goal is to predict volume in the
form of decibel (dB) values from silent video. Each video contains
visual indications for sources of sound. As depicted above, for 100
frames of a sample video, a few frames are displayed correspond-
ing to the vertical dashed lines.

will bring us one step closer to the general goal of predict-
ing visually indicated sounds, and that this will further the
ability of modern computer vision algorithms to coherently
relate various forms of sensory input together.

We first process the drumstick and novel dataset and
generate the associated volume data (in decibels) for each
video. We then train a model consisting of an LSTM and a
CNN on the data. Finally, we evaluate our model’s perfor-
mance by producing plots of the predicted volume vs actual
volume, and by computing error statistics.

2. Related Work

Due to the interest in the field of sound generation from
video, there exists a modest amount of related work.

Processing Visual Data Attempts to predict sound from
video commonly comprise of multi-level architectures with
CNNss at the bottom. For example, [ 1] utilizes a CNN with
clustering and [2] utilizes a CNN with an LSTM in its model
architecture. These architectures use a CNN to generate an
embedding of the image data for the later layers to work
with directly. This removes the need for the later layers to



understand the visual data.

Capturing Motion and State [2] utilizes an LSTM to
capture state in the video. As the image embeddings of
each frame is fed, the LSTM updates its state and captures
the relevant information needed (including motion informa-
tion) to predict the sound cochleagram for future frames. [2]
furthermore does not simply pass in frames to the model’s
CNN for processing. It instead passes in a space-time image
to the model, which consists of a grey-scale version of the
previous, current, and next frames of the video in addition
to the first color frame. The first color frame is passed in to
provide a baseline about the color information in the image,
but no additional color frames are passed in for efficiency.
Adjacent frames are passed to the model, since it succinctly
captures the instantaneous motion occurring at the current
frame, which is essential for the model to accurately predict
sound.

Predicting Sound [I] clusters similar image embed-
dings to predict statistics on the ambient sound present in
the image. The authors’ model produces results equiva-
lent to other state of the art models in this field, but their
model predicts general sound statistics rather than giving
information about the sound at any given instance. On the
other hand, [2] utilizes a CNN-LSTM architecture as previ-
ously discussed to generate frame-by-frame cochleograms
(sounds) for videos of drumsticks hitting various objects.
The authors’ model did produce sounds capable of fooling
humans, but it was for a very specific type of videos.

Broadening the Domain [2]’s approach does success-
fully work for their intended task, but it must be noted that
this was for a very limited domain. It’s highly likely that if
videos of other scenes were tested on their model, the re-
sults would be poor. The same is true for [1]. To ensure that
a model can understand a broader scope, a more general
dataset should be constructed as done in Section 3.

3. Dataset

Our dataset requires videos that clearly display move-
ment to visually indicate sources of sound. In this study,
we utilize two separate datasets that simplify the goal. The
first is the drumstick video dataset from [2] that contains
denoised videos of drumsticks hitting various objects. The
second dataset is a novel dataset of our own construction
called the impacts dataset, containing videos of various ob-
jects hitting (or colloquially impacting) a surface. We pro-
duced this dataset to try and broaden the scope of visually
indicated sounds our model could learn to predict the vol-
ume of. As part of the impacts dataset, we recorded videos
from our iPhones including scenes of hitting a desk with a
water bottle, hitting a desk with a hand, kicking a wall, etc.

To construct our dataset to have image frames as input
and dB levels as output, multiple Python scripts were im-
plemented.

Image Frames To extract image frames from each video
file, we utilized the Python OpenCV library to clip image
files. From the drumstick dataset, we extracted each image
frame from every % second of each video. From the cus-
tom dataset, we extracted each image frame from every %
second of each video. Due to the limited time to train our
model, we decided to take a window of 100 image frames
from each video of our dataset to reduce the amount of com-
putation.

Volume Output Using the Python SciPy /O wavfile li-
brary, each video file was clipped to produce chunks of
sound. To extract the dB levels from each chunk, we used

the following formula:

dB = 20 - logy, (« /zy_lchunk[zf) (1)

To relate to the image frames, we took the corresponding
window of 100 dB values. As a result, each input image
frame k; from a video has a corresponding dB level y; as
output.

Larger-scale Datasets The VGG Sound dataset from [3]
in the project assignment offers a large-scale audio-visual
dataset containing more than 200,000 videos extracted from
YouTube clips. However, we believed there was a lack of
clear visually indicated sounds from many videos, and we
think that a future study on general sound generation may be
better suited to using this dataset. In addition, much more
computational resources than we have access to are required
to deal with more robust datasets such as this.

4. Methodology

As a regression problem, given a sequence of im-
age frames k1, ko, ..., k,, that display visual indications of
sound, we would like to predict the corresponding vol-
ume dB levels ¢, 92, .., Yn- Figure 2 visually explains our
methodology. Our model’s architecture will consist of a
CNN and an LSTM. The CNN will be used to develop an
embedding of the image data, and the LSTM will be used
to capture state and motion in our video. Our goal is to pro-
duce a CNN-LSTM model capable of predicting the frame-
by-frame dB levels of a silent video.

4.1. Pre-processing

Spacetime Image Inputs For each image frame k;, we
constructed a corresponding feature vector x; to be the in-
put to our model. Since our model discussed further in 4.2
utilizes Resnet, we first made the following transformation
f to each image frame: grayscale, resize, and scale (be-
tween -1 and 1). Then, to capture the instantaneous motion
around image frame k;, we construct a spacetime image (as
described in [2]) to be our input feature vector ;. The three
channels of the space-time image will be the grey-scale ver-
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Figure 2. Illustrates the methodology used. Given the image frames of a video, they are transformed and combined to form input feature
vectors. By running through a CNN-LSTM model, it will predict the volume of the frame by recognizing features through the CNN and

memorizing states through the LSTM.

sions of the previous, current, and next frames. x; can thus
be written as follows:

fkiz1)
f(k;)
f(kiv1).

Blur and Downsampling Due to computational limita-
tions, we also had to blur and downsample the image frames
in both our datasets. The frames in the drumsticks dataset
were originally 256 by 456 pixels, and we reduced their res-
olution to 64 by 114 pixels. Similarly, the frames in the
novel impacts dataset were reduced from 1080 by 1920 to
224 by 224.

T =

4.2. CNN-LSTM Model

We feed each feature vector x; into our CNN to gen-
erate an embedding of the spacetime image data. We uti-
lize Resnet-101 for our CNN, due to its accuracy and con-
ciseness due to simple kernel compositions. We then feed
the embedding into our LSTM to update its state, and the
LSTM will output its new state h; as a vector. We perform
a simple linear transformation (whose parameters will need
to be learned) on h; to get the predicted scalar volume in
decibels for the current frame.

We trained our model using Google Collab Pro, on both
the drumsticks and novel impacts dataset. We utilize mean-
squared error (MSE) as our loss function, since this is a
standard regression problem and MSE penalizes larger er-
rors more heavily. This will ensure that there is a significant

penalty to predicting silence during the brief spikes in vol-
ume in our video, thus pressuring our model to learn more
complex behaviour. For performance metrics purposes, we
keep track of the mean-squared error through each epoch of
training the model.

Due to the lack of publicly available implementations,
we programmed our model from scratch.

5. Experimental Results and Discussion

We applied our CNN-LSTM model to two datasets, and
evaluated it with a combination of qualitative and quantita-
tive metrics.

5.1. Drumstick Dataset Results

Given that [2] conveniently provided the drumstick
dataset, we first trained and evaluated our CNN-LSTM
model on this. Figure 3 shows the volume predicted by our
trained model alongside the actual volume (in decibels) for
a video from this dataset. Unfortunately, as can be seen
on the figure, the predicted volume is relatively constantly
throughout this video, with very minor variation through-
out. We found this to be the case for other videos as well,
with our model consistently predicting roughly the mean
volume for a video.

Given a mean-squared error objective function, the op-
timal constant prediction for a series of values is their
mean. Thus, we hypothesized that our CNN and LSTM
layers were producing a roughly similar output for all of the
frames in our video, and the final linear transformation ap-
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Figure 3. Prediction by our CNN-LSTM model for a sample video.
Our model performed poorly on the drumstick dataset as we be-
lieve it was hard to recognize the source of movement from the
drumstick against a blurry complex background.

plied to this output was learned to just produced the mean.
This was indeed the case.

Upon investigation, we found the reason our CNN and
LSTM layer would output roughly the same thing through-
out the video, even in frames with and without the drum-
stick, was not due to an error in model construction. Due
to the computational limitations of our project, we blurred
and downsampled the drumstick dataset’s frames to reduce
their resolution by a factor of 16. Since the drumstick is
a relatively slim object, it became almost unnoticeable to
even the trained human eye in the lower resolution images,
thus making all of the image-frames appear similar.

5.2. Impacts Dataset Results

As mentioned previously, we produced a novel dataset
called the impacts dataset. This custom dataset contains
clips of a water bottle hitting a table, a trash can being
kicked, etc. and was created to broaden the scope of vi-
sually indicated sounds our model could predict the volume
of.

Figure 4 shows the predicted volume and actual volume
(in decibels) on the same plot for two randomly selected
videos from this dataset. As seen in the figure, our model
predicts an inflection in the volume at the correct time, and
predicts a relatively low volume for the remainder of the
time in the videos correctly. However, our model did not ac-
curately predict the volume of the inflection in these videos.
We found the observations discussed in this paragraph held
for our model in general.

We tried modifying our architecture and our training ap-
proach in the following ways to improve our results:

* Using the Adam vs the SGD optimizer
* Training both the CNN and LSTM together, vs setting

the CNN to use the pre-trained ImageNet classification
weights and only training the LSTM.

¢ Increasing and decreasing the number of features and
layers in the CNN and LSTM in our model.

We evaluated these different approaches quantitatively
by examining the validation loss after a certain amount of
epochs, and qualitatively by producing a plot similar to fig-
ures 3 and 4 with the predicted and actual volumes for a
video plotted. We found that the choice of the optimizer
did not make any noticeable difference in our model’s per-
formance. In addition, we found that adjusting the number
of layers in our LSTM between 1 to 3 did not affect our
model’s performance, and neither did scaling the number of
features in our CNN up or down by a factor of 2.

However, we did find that using the default ImageNet
weights for our CNN and only training the LSTM did per-
form better than training both the CNN and LSTM from
scratch. Our model’s validation loss started at a lower value
and continued to fall with the former approach, whereas
with the latter approach our model’s validation loss started
high and very quickly stagnated. We believe this may have
been caused by exploding or vanishing gradients as the
Resnet101 CNN in our model is several layers away from
the output. Thus, it may have taken several hundreds of
epochs to train the CNN from scratch, which we did not at-
tempt due to computational limitations. The results shown
in Figure 4 were achieved with the former approach.

Despite trying several different approaches to improve
our model’s performance, we found our model still strug-
gled with accurately estimating the volume of sound inflec-
tions. This may partially be attributed to computational lim-
itations. We found that our model’s validation loss con-
sistently fell, even when we stopped training around 25
epochs, and performance may have further improved if we
continued training. Figure 5 shows the training and vali-
dation loss as the number of epochs our model is trained
increases. In addition, we also had to lower the resolution
of the videos in the impacts dataset substantially. While it
was still possible to gain a coarse understanding from the
lower-quality dataset, a higher resolution and higher frame
rate may be needed for our model to better ascertain the
instantaneous speed during the impact and the severity of
impact as well, which is needed to predict the volume of
those sounds.

A future study with access to greater computational re-
sources could be very helpful in testing these potential ideas
to improve our model. In addition, it could train our model
on an even larger impacts dataset to broaden our model’s
learned domain even further.
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Figure 4. Displays graph of running our CNN-LSTM model on
the Impacts dataset. Our model was successful in predicting the
localities of inflection points, but more work is needed to accu-
rately predict the sound intensities at those points.
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Figure 5. Training and validation loss of our model for training on
the impacts dataset, with a normalized output. As illustrated, both
the training and validation error have a decreasing trend, showing
that with more epochs, it’s likely that the model can continue to
learn the data better.

5.3. Additional Discussion

Broadening the Scope By constructing a custom im-
pacts dataset, we broadened the scope of video scenes
when predicting volume. While we’ve improved on prior
work by expanding the possibility of training more gen-
eral video scenes, we’ve also shown that the drumstick
dataset performed poorly despite being niche. Since the
videos were affected more greatly when blurring and down-
sampling the drumstick dataset, our impacts dataset im-
proved the model’s learning greatly as seen with the losses
shown in Figure 5 by recording higher-quality videos with
more prominent visually indicated sounds. By combining
prior work, an interesting area of research is to consider
sources of visually indicated sounds that are more distorted
or harder to recognize.

Limitations As discussed in detail in 5.2, despite pro-
ducing promising results, our computational resources lim-
ited the extent the model could be trained for. Since the
goal of our impacts dataset broadened the scope to include
various video scenes, the model required more time already
in the learning process. The GPU we utilized was only al-
lowed to train our model for 10 hours at a time, but access
to more robust computational resources could greatly help
our model in learning general video scenes even better.

6. Conclusion

In this project, we proposed the problem of predicting
volume from visually indicated sounds for video scenes
in general. We created the impacts dataset that contained
videos of various scenes showing clear indications of move-
ments that produced sounds. The impacts dataset took a
step beyond prior work by broadening the scope of videos.
Through our constructed CNN-LSTM architecture, we de-
veloped an algorithm to predict the volume from our im-
pacts dataset. The evaluation of the quality of our approach
was done both qualitatively and quantitatively. We believe
our results not only contribute new insights to visually in-
dicated sounds, but also expose the limitations that are hard
to overcome in this area of study.

Through our experiments, we’ve shown cases where our
CNN-LSTM model can produce poor results when predict-
ing volume, especially for the drumstick dataset. By inves-
tigating the data, we realized that by blurring and downsam-
pling the frames, the diminished resolution caused sources
of sound to be unrecognizable. Since this made all the im-
ages appear similar, it was hard for the model to learn what
was causing significant sudden increases in volume. A pos-
sible consideration for further research is to study videos
of lower resolution to predict volume. While a challenging
task, it would be a useful and intriguing application to pre-
dict sound from silent films from before the 1930s which
had much lower-quality videos.



Since our impacts dataset improved upon lower-
resolution videos, a significant tradeoff was performance.
For more modern applications such as foley sounds in the
movie industry, improvements in camera technology are
producing videos of higher resolution. With higher resolu-
tion, our model would require more robust computational
resources. In addition, different model architectures can
be explored. While a CNN-LSTM architecture can allow
the model to learn about changes in each image frame over
time, a more robust architecture could help represent more
complex factors in videos. All in all, we believe this project
has furthered the progress made in the field of sound gener-
ation from visual media and opens up many more avenues
of exploration.
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